# Divide and Conquer Strategies for Effective Information Retrieval

Jie Chen and Yousef Saad Department of Computer Science and Engineering, University of Minnesota

## Background

Latent Semantic Indexing (LSI): Let a column vector  $x_i$  represent a document. Given a term-document matrix  $X = [x_1, \ldots, x_n]$  and a query vector q, the relevance scores of the documents to the query are computed (up to normalizations) as the row vector



where  $X_k$  is the best rank-k approximation of X.

Limitations: When the document collection (X) becomes large, the computation of  $X_k$  is very expensive, both in time and in memory. Let X have size  $m \times n$  with nnz nonzeros, the most efficient implementation of truncated SVD takes

- time:  $O(k'(nnz + \min(m, n)) + T_t)$ ,
- space:  $O(nnz + k' \min(m, n) + T_s)$ ,

where k' is the number of Lanczos steps (typically a few times of k), and  $T_t$  ( $T_s$ ) is the time (space) cost of eigendecompositions of tridiagonal matrices and convergence tests.

# Our Approach

Two combined schemes to reduce the above costs:

- Partition the term-document matrix, and
- Perform a relevance analysis (similar to LSI) for each partition, or for only a few ones.

### Benefits:

- 1. The partitioning step is simple and very inexpensive.
- 2. The relevance analysis yields similar results to LSI, but it can be an order of magnitude faster.
- 3. Each analysis deals with only a small portion of the matrix, hence the whole process is highly parallelizable.
- 4. Instead of a complicated parallel SVD for large scale LSI, our approach is conceptually much simpler and easier to implement.

# **Partitioning**

# 

### Column-Partitioning(X)

- 1. Compute the centroid c of the documents.
- 2. Compute the largest right singular vector v of the column-centered matrix  $\bar{X} = X c\mathbf{1}^T$ .
- 3. Form  $X_+ \leftarrow \{x_i \mid v_i \geq \mathsf{margin}_-\}$  and  $X_- \leftarrow \{x_i \mid v_i < \mathsf{margin}_+\}$ .
- 4. If  $|X_+| > \text{set.size.threshold}$ , COLUMN-PARTITIONING $(X_+)$ .
- 5. If  $|X_-| > \text{set.size.threshold}$ , COLUMN-PARTITIONING $(X_-)$ .

### Row-Partitioning(X)

- 1. Compute the centroid  $c^\prime$  of the terms.
- 2. Compute the largest left singular vector u of the row-centered matrix  $\bar{X}' = X \mathbf{1}c'$ .
- 3. Form  $X^+ \leftarrow \{X(i,:) \mid u_i \geq \mathsf{margin}^-\}$  and  $X^- \leftarrow \{X(i,:) \mid u_i < \mathsf{margin}^+\}$ .
- 4. If  $|X^+| > \text{set.size.threshold}$ , ROW-PARTITIONING $(X^+)$ .
- 5. If  $|X^-| > \text{set.size.threshold}$ , ROW-PARTITIONING( $X^-$ ).



# **Query Strategies**

### For tall matrix X:

- 1. Partition the columns of X. A binary tree structure is formed. (See figure on the panel to the left.)
- 2. For a given query q, compute relevance scores between q and those documents in the leaves of the tree. (See explanation on the panel to the right.)
- 3. Since a document  $x_i$  may belong to different partitions, the relevance score for  $x_i$  is the maximum of all the scores computed for  $x_i$  in step 2.

### For wide matrix X:

- 1. Partition the rows of X. A binary tree structure is formed. (See figure on the panel to the left.) Denote the resulting leaf nodes  $X_{(1)}$ ,  $X_{(2)}$ , ...  $X_{(p)}$ .
- 2. Partition the query q in the same way.
- 3. Compute  $s' = \sum_{i=1}^p q_{(i)}^T \tilde{Q}_k^{(i)} \tilde{Q}_k^{(i)T} X_{(i)}$ . (See explanation on the panel to the right.)
- 4. Scale each entry of s' by the norm of the corresponding column of



## Partitioning (cont.)



# Relevance Analysis

How to analyze the relevances between q and X (or a portion of X)?

- In LSI, the relevance scores are computed as the vector  $q^T X_k$ , modified by scaling each entry with the norm of the corresponding column of  $X_k$ .
- Let the SVD of X be  $U\Sigma V^T$ , then  $q^TX_k=q^T(XV_kV_k^T)$  and  $q^TX_k=q^T(U_kU_k^TX)$ .
- Instead, for tall matrix X, we propose computing the vector  $q^T(XQ_kQ_k^T)$  and scaling each entry with the norm of the corresponding column of  $XQ_kQ_k^T$ , and for wide matrix X, compute the vector  $q^T(\tilde{Q}_k\tilde{Q}_k^TX)$  and scale each entry with the norm of the corresponding column of  $\tilde{Q}_k\tilde{Q}_k^TX$ .
- Here, the columns of  $Q_k$  (and  $\tilde{Q}_k$ ) are the Lanczos vectors for the matrix  $X^TX$  (and  $XX^T$ ). The major advantage is that they are much less expensive to compute than  $V_k$  (and  $U_k$ )!

How good is using Lanczos vectors instead of singular vectors? For any j < k,

$$\left[ (q^T X) - (q^T X Q_k Q_k^T) \right] u_j \le c_j T_{k-j}^{-1} (1 + 2\gamma_j),$$

$$\left[ (q^T X) - (q^T \tilde{Q}_k \tilde{Q}_k^T X) \right] u_j \le \tilde{c}_j T_{k-j}^{-1} (1 + 2\gamma_j),$$

where  $c_j$  and  $\tilde{c}_j$  are some positive constants,  $\gamma_j$  is the eigengap between the j-th and the (j+1)-th eigenvalues of  $X^TX$ , and  $T_\ell(x)$  is the Chebyshev polynomial of the first kind of degree  $\ell$ . Fixing x,  $T_\ell$  can be viewed as an exponential function of  $\ell$ :

 $T_{\ell}(x) \approx \frac{1}{2} (\exp(\operatorname{arccosh}(x)))^{\ell}.$ 

### Computational costs:

|                                                               | Singular vectors             | Lanczos vectors       |
|---------------------------------------------------------------|------------------------------|-----------------------|
| Time                                                          | $k'(nnz + \min(m, n)) + T_t$ | $k(nnz + \min(m, n))$ |
| Space                                                         | $nnz + k'\min(m,n) + T_s$    | $nnz + k\min(m, n)$   |
| In practice, computing the Lanczos vectors can be an order of |                              |                       |

magnitude faster than computing the singular vectors.

### Results



Eigenvalue distribution of the matrix  $X^TX$ . Note the big eigengaps.



The value of  $\left[(q^TX)-(q^TXQ_kQ_k^T)\right]u_j$  for different j (fixing k=300).



Average query precision for different k.



Precision recall for k = 200.



Time cost: our approach v.s. LSI (in seconds).



Percentage of relevant documents that are in the partition where a certain query belongs.